Gut Health and Diet of Older Adults

Presenter: Colleen McCrief, MS, RDN
Director, Didactic Program in Dietetics
Course Objectives

• Objective 1: Identify the role of the gut microbiota and factors that influence it through the lifespan.
• Objective 2: Identify how gut health influences disease states.
• Objective 3: Recommend diet change to promote a healthy gut.
What is the Human Microbiome?

• **Microbe**: tiny living organism, such as bacterium, fungus, protozoan, or virus

• **Microbiome**: collectively all the microbes in the human body; a community of microbes
 • Found on skin, nose, mouth, urogenital tract, GI tract
 • Up to 10x more microbial cells than human cells

• **Gut Microbiota**: the microorganisms living inside the GI tract
 • “Gut flora”
 • ~100 trillion organisms

• **Dysbiosis**: change in the normal bacterial ecology; bacterial imbalance
What do Microbes do for You?

• Essential to maintaining our health
• Provide ability to harvest nutrients
 • 1’ by breaking down soluble fiber
• Produce energy otherwise inaccessible to the host
• Produce vitamins
• Prevent colonization by pathogens
• Help develop the immune system
• Metabolize carcinogens
Bacterial Phyla

• Estimated that 500 to 1,000 species of bacteria live in the human gut but belong to just a few phyla:

• Firmicutes and Bacteroidetes dominate but there are also Proteobacteria, Verrumicrobia, Actinobacteria, Fusobacteria and Cyanobacteria.
Microbiome Influences 4 Areas of Health

<table>
<thead>
<tr>
<th>Area</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition</td>
<td>• Breaks down complex molecules of food</td>
</tr>
<tr>
<td></td>
<td>• Influences cravings and satiety</td>
</tr>
<tr>
<td>Immunity</td>
<td>• Develop our adaptive immunity at birth</td>
</tr>
<tr>
<td></td>
<td>• Allergies and/or autoimmune conditions can develop when early microbial exposures are disturbed</td>
</tr>
<tr>
<td>Behavior</td>
<td>• Gut-brain axis</td>
</tr>
<tr>
<td></td>
<td>• Link between gut microbiome and brain disorders</td>
</tr>
<tr>
<td>Disease</td>
<td>• Intestinal overgrowth</td>
</tr>
<tr>
<td></td>
<td>• Link between gut microbiome and disease states</td>
</tr>
<tr>
<td></td>
<td>• IBD, Obesity, Diabetes, CVD, Parkinson’s</td>
</tr>
</tbody>
</table>
Where does it start?

Figure 1 | The gut microbiota programmes host health—from mother to infant. The fetus comes into contact with microbes originating in the maternal gut through the placenta and amniotic fluid. A massive inoculum of maternal bacteria is encountered during vaginal delivery, which is also associated with increased maternal intestinal permeability and translocation of gut bacteria into breast milk. Breastfeeding not only modulates neonatal bacterial colonization and immune maturation, but is a direct source of maternal bacteria. After birth, skin-to-skin contact and nursing ensures direct transfer of maternal bacteria to the infant to enhance healthy immune and metabolic maturation.

Development of the Microbiota

Newborn
- Initial gut bacteria (founder species) depends upon delivery mode
 - Vaginal delivery: Lactobacillus, Prevotella spp.
 - Vertical inheritance from mother
 - C-section: Staphylococcus, Corynebacterium, Propionibacterium spp.
 - Higher susceptibility to certain pathogens
 - Higher risk of atopic diseases

Early childhood
- New strains (less certain in origin) outcompete old ones
- Rapid increase in diversity
- Early microbiota development = high instability
- Shifts in response to diet, illness

Adult
- Highly distinct, differentiated microbiota
- Microbial community may continue to change, but at a slower rate than in childhood

Elderly
- Substantially different gut communities than in younger adults

A Two-Sided Relationship

Microbes

Dietary components
Dietary Component: Probiotics

• Probiotics
 • Foods or dietary supplements that contain live bacteria
 • WHO specifies that when administered in *adequate amounts*, confers a health benefit

• Prebiotics
 • Nondigestible food ingredient, which selectively stimulates the growth of gut bacteria

• Synbiotics
 • Combination of probiotics with a prebiotic
Dietary Component: Probiotics

• Probiotics can be formulated into many products
 • Food, meal replacement, dietary supplement, prescription drug

• Examples:
 • Lactobacillus
 • Yeast
 • Bifidobacterium
 • E. Coli
 • Bacillus
Probiotics: Proposed Health Benefits

Probiotics: Conclusions

What We Don’t Know

• How much we’re eating/taking
 • Not required to be listed on packages
• How much live bacteria is available at the end of the product’s shelf-life
• Which bacteria are helpful— not all have the same effect
• How much should be taken
• Who would most likely benefit from taking
Probiotics: Conclusions

What We Know:

• Some probiotics are helpful
• The FDA has not approved any probiotics for prevention or treatment of any health ailments
• Supplements are most beneficial when containing at least 1 billion live cells/gram
• Supplements *probably* best if contain more than 1 type/strain of bacteria
• May be dangerous in those with weakened immune systems
Microbiome and Cardiovascular Disease

- Dysbiosis can trigger systemic inflammation
- Trimethylamine N-oxide (TMAO)
 - Derived from gut microbiota as metabolites of dietary nutrients
 - \uparrow TMAO = adverse CV events
- Elevated TMAO associated with poor outcomes for patient with heart failure and chronic kidney disease
- TMAO Foods

Microbiome and Cardiovascular Disease: Atherosclerosis

3 Pathways

- Infection = inflammatory response; aggravates plaque development or triggers rupture
- Metabolism of cholesterol and lipids by gut microbiota → development of plagues
- Diet components metabolized by gut microbiota can have various effect on atherosclerosis
Microbiome and Cardiovascular Disease: Hypertension

- TMAO has role in regulation of arterial BP
- Very few human studies
- Short-chain fatty acids produced by microbiota influence BP that is related to renal sensory nerves
Evidence for the Mediterranean Diet

Microbiome and IBD

• Ulcerative colitis & Crohn's = chronic, relapsing inflammation
• Caused by dysbiosis?
 • Chicken or the egg scenario
• Not caused by a single microorganism
• Genetics, immunology, environmental factors & microbial all play a role
• BUT, inflammation does ↓ bacterial diversity and lowers the abundance of bacteriodetes and firmicutes
Ulcerative Colitis & Crohn’s

- Changed microbiota in UC and CD is a result of chronic inflammation

- Cycle of inflammation causing dysbiosis which causes limited short-chain fatty acids or anti-inflammatory signals & new inflammation
Microbiome and IBS

• Evidence of dysbiosis
 • Characterized by alterations in firmicutes and proteobacteria
 • Higher amounts of Dorea, Ruminococcus, haemophilus parainfluenzae

• Studies ➔ ~10% of IBS cases begin after an episode of gastroenteritis (PI-IBS)

• Factors known to precipitate or exacerbate IBS also induce intestinal dysbiosis
 • Antibiotic use
 • Enteric infection
 • Stress
 • Dietary factors
Microbiome and IBS: Dietary factors

Dietary Metabolites
- Organic acids
 - NH3
 - Methane
 - H2 Sulfide

Contribute to IBS s/s
Evidence for Dietary Fiber

Figure 1 | Loss of diversity. Sonnenburg et al.¹ found that mice fed a low-fibre diet had a lower species diversity in their gut microbiota than mice fed a high-fibre diet. In first-generation mice, most (but not all) of this diversity was recoverable when mice on the low-fibre diet were switched to a high-fibre diet. However, the authors found that diversity loss was greater in each subsequent generation maintained on a low-fibre diet, and that the degree of recovery also decreased, implying extinction of some microbial species.

Microbiome and Obesity

• Western diet = microbial dysbiosis
 • Changes in firmicutes/bacteroidete ratio
• Gut diversity differs in obese vs nonobese
• Gut microbiota influences gut permeability → leads to entry of microbial lagans into the bloodstream → ↑ insulin resistance & prevent peripheral uptake of fat
• Unlikely that obesity is caused by microbes... but diet has effect on microbiota
Microbiome and Obesity

12 obese individuals

Randomly assigned to either a fat-restricted (FAT-R) or to a carbohydrate-restricted (CARB-R) low calorie diet.

The composition of their gut microbiota was monitored over the course via stool samples.

Before diet therapy, obese people had fewer Bacteroidetes ($P<0.001$) and more Firmicutes ($P=0.002$) than did lean controls.

Over time, the relative abundance of Bacteroidetes increased ($P<0.001$) and the abundance of Firmicutes decreased ($P=0.002$), irrespective of diet type (Fig. 1b).

Increased abundance of Bacteroidetes correlated with percentage loss of body weight, and not with changes in dietary calorie content over time.
Type 2 Diabetes and Obesity

• Alterations in gut microbial populations have been linked to:
 • Changes in insulin sensitivity
 • Altered glucose metabolism
 • Development of metabolic syndrome

• In Type 2 DM: possible alterations in butyrate producing bacteria such as Faecalibacterium prausnitzii
Microbiome and Type 2 Diabetes Mellitus

• Potential mechanism underlying the role of gut microbe and Type 2 DM
 • Inflammation and intestinal permeability contribute to development
 • Lipopolysaccharides (LPSs) have a key role in development of inflammation and insulin resistance
 • Individuals with Type 2 DM have been shown to have ↑ inflammation and LPS levels
 • High-fat diet have been shown to ↑ LPS levels
 • More permeable gut allow more LPS to enter the circulation
Microbiome and Parkinson’s Disease

- Altered microbiome
- Enhanced gut permeability

Translocation of bacteria relevant to PD pathogenesis

- Modulation of the microbiota-gut-brain-axis through pharmabiotic intervention may be an upcoming therapy in PD
Microbiome and Parkinson’s Disease

• Matrix metalloproteinase-9 (MMP-9), a major component of the basement membrane, may contribute to the pathogenesis PD
• MMP-9 is associated with a loss of intestinal microbiota
• Consumption of probiotics may decrease MMP-9
• Consumption of plant based (Mediterranean) diet may decrease MMP-9
What can WE Do?

• Plant based or Mediterranean diet
• Initiation of probiotics
• High fiber diet
• Bariatric surgery
 • RYGB results in change in the ratio of bacteria
• Avoidance of emulsifiers & artificial sweeteners—remains unknown
‘Metagenomic’ View of Nutrition

- The human diet is vastly more complex than a simple combination of sugar, fat, and protein.
- The interactions between food-associated microbes and the gut microbiome need to be better characterized.

The Future...

• The past has looked at what microbes exist
• The future looks to what the microbes are doing
• Microbiome research is an emerging science; as data increases, the number of disease linked to alterations in the gut will likely grow
References

